Received 4 April 2006

Accepted 4 April 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yi-Hang Wen,^a Yin-Hua He,^a Yun-Long Feng^a and Seik Weng Ng^b*

^aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 291 K Mean σ (C–C) = 0.002 Å R factor = 0.032 wR factor = 0.088 Data-to-parameter ratio = 7.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

An orthorhombic modification of 4,4'-diaminobenzophenone

The molecule of the title compound, $C_{13}H_{12}N_2O$, uses one of its amine groups to hydrogen bond to two other molecules, affording a layer motif in the crystal structure.

Comment

The crystal structure of 4,4'-diaminobenzophenone, (I), was reported in the trigonal space group $P3_1$ (Velden & Noordik, 1980); the compound adopts a linear hydrogen-bonded chain structure. The orthorhombic modification also has the atoms of the molecule lying in general positions, but the less densely packed structure features hydrogen bonds that give rise to a hydrogen-bonded layer motif (Fig. 1). Only one amine group is involved in the interactions.

Experimental

A mixture of cadmium acetate dihydrate (0.133 g, 0.5 mmol) and 4,4'diaminobenzophenone-3,3'-dicarboxylic acid (0.075 g, 0.25 mmol) in water (16 ml) was placed in a 25 ml Teflon-lined stainless steel Parr bomb. The bomb was heated to 433 K for 72 h. It was cooled to room temperature over 3 d to furnish orange prismatic crystals.

Crystal data

$C_{13}H_{12}N_2O$	Z = 4
$M_r = 212.25$	$D_x = 1.301 \text{ Mg m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 5.4982 (5) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 8.1110 (7) Å	T = 291 (2) K
c = 24.306 (2) Å	Prism, orange
V = 1084.0 (2) Å ³	$0.40 \times 0.30 \times 0.08 \text{ mm}$

Data collection

 $R[F^2 > 2\sigma(F^2)] = 0.032$

All H-atom parameters refined

 $wR(F^2) = 0.088$

1470 reflections

193 parameters

S = 1.02

Rigaku Mercury CCD area-detector	8288 measured reflections
diffractometer	1470 independent reflections
ω scans	1416 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.023$
(CrystalClear; Rigaku/MSC,	$\theta_{\rm max} = 27.5^{\circ}$
2000)	
$T_{\min} = 0.702, \ T_{\max} = 1.000$	
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F^2) + (0.0594P)^2]$

+ 0.165P]

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta\rho_{\rm max} = 0.20 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$

where $P = (F_0^2 + 2F_c^2)/3$

© 2006 International Union of Crystallography All rights reserved $N1 - H1n2 \cdots O1^{ii}$

Table 1 Hydrogen-bond geometry (Å, °).						
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$		
N1-H1 n 1···O1 ⁱ	0.86(1)	2.08(1)	2,917 (2)	165 (2)		

0.86 (1) 2.27 (1) Symmetry codes: (i) x, y + 1, z; (ii) $x + \frac{1}{2}, -y + \frac{3}{2}, -z$.

In the absence of significant anomalous scattering effects, Friedel pairs were merged. H atoms were located in difference Fourier maps and refined with distance restraints of N-H = 0.85 (1) Å and C-H =0.95 (1) Å; their displacement parameters were freely refined.

Data collection: CrystalClear (Rigaku/MSC, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXL97.

The authors thank the Foundation of the Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces (No. 0506) and the University of Malaya (No. F0712/2005c) for supporting this study.

Figure 1

165 (2)

152 (2)

3.047 (2)

Three molecules of (I), with displacement ellipsoids drawn at the 50% probability level and H atoms shown as spheres of arbitrary radii. [Symmetry codes: (i) x, 1 + y, z; (ii) $\frac{1}{2} + x$, $\frac{1}{2} - y$, -z.] Dotted lines indicate hydrogen bonds.

References

Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

- Rigaku/MSC (2000). CrystalClear. Version 1.3.6. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXL97. University of Göttingen, Germany.
- Velden, G. P. M. van der & Noordik, J. H. (1980). J. Cryst. Mol. Struct. 10, 83-92.